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Correction Due to a Finite Permittivity for a
Ring Resonator in Free Space

RONALD De SMEDT

Abstract —To better determine the resonant fields of a dielectric reso-
nator with high permittivity ¢, the asymptotic theory with 1/‘/; as a
small parameter is extended by adding higher order terms in 1/ ‘/ej in the
fields, the resonant wavenumber, and radiation Q. Extensive data are
shown for the ¢-independent “nonconfined” mode of a ring resonator,
which radiates as a magnetic dipole. Some results are added for the
“magnetic quadrupole” mode.

1. INTRODUCTION

HE CHARACTERISTICS of a dielectric resonator of

high permittivity, an important component of micro-
wave circuits [1]-[2], have been investigated extensively
[3]-[12]. A solution for arbitrary €, requires the solution of
the field problem for each ¢, encountered in practice. This
cumbersome procedure can be avoided by introducing a
perturbational approach based on a series expansion in
1/N =1/\/Z [9]-[11]. The leading term in these" series
gives good results as soon as €, exceeds, say, 100 [11], [13],
[14]. Present resonators, however, are based on materials
with €, of the order of 38, because these materials have
better temperature coefficients, lower losses, and are more
reproducible. The present paper endeavors to extend the
limit of applicability of the perturbational approach by
evaluating higher order terms in the series in 1/N. Numeri-
cal data are given for the lowest ¢-independent “noncon-
fined” resonant modes of a ring resonator located in free
space (Fig. 1). These modes radiate either as a magnetic
dipole or a quadrupole. The quadrupole mode satisfies an
“electric wall” condition in the z = 0 plane and, hence, is
relevant for a resonator located on a metallic plane [13].
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II. MATHEMATICAL FORMULATION

A. Fields

The ¢-independent fields with azimuthal E of an axially
symmetric resonator can be derived from a scalar function
a(r, z), according to

= ko
E=- ]ﬁRcap.(P
. . &
—grad(ra) X[
r ¢

k is the wavenumber in the dielectric and R, =pq/€q =
120« the free-space impedance. 7, ¢, z are cylindrical coor-
dinates with the z-axis along the symmetry axis of the
resonator, a meridian cross section of which appears in Fig.
1. By substituting (1) in Maxwell’s equations, we find that

La+k*a=0, in S
2
$a+—k—a=0, in S and §” (2)
NZ

where S is the cross section of the inner volume of the
resonator and S’ and §” of the outer volume. The dif-
ferential operator .Z is

_ %

Ja % 1
or?

1 da

The functions « and da/dn are continuous on C (the
interface between resonator and vacuum), while a is zero
on the z-axis and regular at infinity. For a dipole mode, a
is symmetric about the z = 0 plane, while for a quadrupole
mode it is antisymmetric. To apply the perturbational
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Fig. 1. Coordinates and dimensions of a ring resonator in free
space—merdian cross section.

approach, the relevant power expansions are [15]

1 1
a=a0+Fa2+Fa4’+ ses
2 2. L o2 L @)
k*=ky+ F(k )2+ }:(k )at
where we shall allow (k2), and (k?), to be positive or
negative. It can be shown that only even powers in 1/N
are present in (4) [15}: Inserting these values in (2) leads to
the known equation for a, [11}], and the following equation

for a,:
inS
in S’ and §”

—(k2)2a0

La, + ki, =
(5)

-2
Lo, = — ko,

This equation determines a, to within an arbitrary multi-
ple of &, The resulting indeterminacy is classically re-
moved by means of an orthogonality condition [16] which
is, in the present case [9]

ffwaﬁm-ﬁpdV.:o | (6)

where H,, and ﬁp are the magnetic fields of two different
modes and Vv, and V, are the inner and outer volume of the
resonator, respectlvely Applied to a, and «,, (6) reduces
to

f [S aga,rds =0. (7)

B. Resonant Wavenumber

“The fundamental relationship for the determination of
the higher perturbational orders is

[fls2s—s2riras= [| 158 -

with 7 the outward normal. Suitable use of (8) leads to

] fs ,, 0rds
/ fS odrds

(')f ] rdc  (8)

(k?), = — kg ©)
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The expression for (k?), requires knowledge of e, and «,,
a normal requirement in an iterative process, and a particu-
lar solution of a, in the outer region, which is easily
derived from a, and a, without knowledge of (k2),. Thus

1
() ———
ffa(z,rdS
s
RITENY 2
{(k )Z[f_/S“O“ZrdS+IL,+S,,“0rdS]
1
+k3 L as——
O R e [ffm o P T -/ct,0
da, - Oa
.(a4a—no—a08—n4)rdc}} (10)
where C is a circle of large radius R, in the meridian

plane. In (10), we have made no use of the normalization
(7) as (10) is insensitive to the undeterminacy of a,.

C Quality Factor Due to Radiation Losses

To find Q,, the quality factor due to radiation losses, we
use the general relationship [9]
19 g )

&
I (11)

where 2, is the radiated power, and & the total stored
field energy. A detailed evaluation, shown in Appendix I,
leads to the following Q for the dipole mode:

B N3 fj;a_(z)rdS . 1 fj; +S”ozordS
TR [Usao;zdsr v’ ffaordS
) ffsaoazrdS . f];azrzdS

f/sa(z,rdS ‘U;aorzdS
+k_§ f_[gao(r2+z2)r2d5

. [foras

For the magnetic quadrupole mode, a similar expression
obtains, which is now proportional with N°. As for (k?),,
use of the normalization condition (7) is not necessary for
a correct evaluation of the correction term in (12).

(12)

D. Numerical Implementation

The regions S and S’ are divided into triangular ele-
ments in which higher order polynomials are used. In the
exterior region S”, the field is represented by a finite sum
of static spherical harmonics with unknown coefficients.

- On C,, we enforce the continuity of the finite-element
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Fig. 2. Zero- and second-order field of a pillbox with aspect ratio
L/2a=0.5 (dipole mode). (a) Zero-order field aq. (b) Second-order field
oy,

functions and the series (Fig. 1). This method is very
- reliable and yields excellent field values both inside and
outside the resonator, which are quite independent of the
position of the outer contour C, {17]. Checked against the
known analytical solution of the sphere, the accuracy on
the resonant wavenumber and the various integrals of « is
found better than 0.1 percent. In practice, we have used
about 70 third-order finite elements (346 vertices) and 9
terms in the expansion in the exterior region S”. :

IIL

We have applied our analysis to the ring resonator of
Fig. 1, the dipole mode of which has already been investi-
gated in the zero order [11]. We have also considered, for
purposes of verification, the spherical resonator for which
analytical solutions are available, both for arbitrary N and
the present-asymptotic series [15], {18].

A. Fields

We have selected data for a pillbox of aspect ratio
L/2a=1/2 and radiating as a magnetic dipole. Fig. 2(a)
shows the lines of constant a,, normalized to a maximum
a, =1, and separated by steps of 0.1. Fig. 2(b) displays the
corresponding values of a,. The large distance behavior of

NUMERICAL RESULTS
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Fig. 3. Zero-order of the resonant wavenumber kq,a versus aspect ratio

L/2a and b/a=0,1/4,1/2, and 3 /4. Full line
Dashed line ---- quadrupole mode.
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Fig. 4. First correction of the resonant wavenumber — (k?), /k3 versus
aspect ratio L/2a and b/a=0,1/4,1/2, and 3/4. Full line
dipole mode. Dashed line ---- quadrupole mode.

these functions is of interest. For ay, it is sind/R* and
sind for a,. We note that, in the case of the quadrupole
mode, this behavior is sin#fcos 8/R® for @, and
sinfcos8/R for a,.

B. Resonant Wavenumber .

Plots of kya, —(k?),/kZ, and (k2),/k3 are given in
Figs. 3-5 for various geometrical ratios. The corresponding
numerical data for the dipole mode can be found in Table
I. In the figures, the full lines represent the results for the
dipole mode, while the dashed lines refer to the quadrupole
mode. In Fig. 5, (k?),/k? is positive for the dipole mode
and negative for the quadrupole mode. The data are of
great interest for practical applications. An idea of the
accuracy they provide is obtained by applying the per-
turbational method to the sphere [19). For the sphere, using
one term, two terms, or three terms in the expansion (4) of
ka, respectively, gives a relative error of about 1, 0.1, or
0.01 percent at €,=100; 2.1, 0.54, or 0.17 percent at
€,=39; and 3, 1.2, or 0.58 percent at ¢, = 25 for the dipole
mode. For the quadrupole mode, we find, respectively,
(0.36, 0.02, 0.003 percent), (1,0.1,0.05 percent), and
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Fig. 5. Second correction of the resonant wavenumber |(k2), /k3| versus

aspect ratio L/2a and b/a=0, 1/4,1/2, and 3 /4. Full line
dipole mode. Dashed line ---- quadrupole mode.
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Fig. 6. Zero-order of the Q-factor Q, versus aspect ratio L/2a and
b/a=0,1/4,1/2, and 3/4. Full line Qo /N3 (dipole mode).
Dashed line ---- Q,/N?> (quadrupole mode).

TABLE]I
RESONANT WAVENUMBER VERSUS ASPECT RATIO L /24 FOR
b/a=0,1/4,1/2,3 /4 (DiroLE MODE). THE FIRST PART IS
RELEVANT TO kya, THE SECOND ONE TO —(k2), /k3, THE THIRD
ONE 10 (k?), /K3.

L/2a 1/5 1/3 1/2 2/3 1 3/2 2 3 5
b/a + d

.0 4,338 3.652 3,259 3.046 2.822 2.667 2.590 2.515 2.461
.25 4.363 3.673 3.277 3.063 2.837 2.681 2.603 2.527 2.472
50 4,635 3.906 3.485 3.256 3.013 2.844 2.759 2.677 2.616
.75 | 5,731 4.857 4,346 4.063 3.759 3.545 3.436 3.329 3.249
ot

.0 3.309 2.502 2,189 2.098 2.122 2.300 2.507 2.897 3.547
.25 3.404 2.579 2.253 2.158 .2.180 2.357  2.570 2.966 3.623
.50 4,237 3.265 2,879 2.762 2.779 2.980 3.224 3.690 A4.461
75 | 7.442 6,051 5.494 5,334 5.394 5.748 6.169 6.965 8.286
et

.0 48,14 29,92 23.91 22,29 22.81 26.62 31.90 44,64 T7.87
.25 50.63 31,38 25.03 23.28 23.77 27.69 33.16 46.33 80.39
.50 | 75.09 46.89 37.36 34.60 35.00 40.27 u7.74 65.98 1t2.5
.75 216,3 142,2 116.1 108.5 109.9 125.2 147.1 199.4 331.4
——t

(1.6,0.21,0.17 percent) for the same values of ¢,. A remark
of general interest—the correction term (k?),/k§ is
smaller for:the quadrupole mode than for the dipole mode.
This is because the zero-order fields are more strongly
concentrated in the dielectric region for the quadrupole
mode than for its dipole counterpart.
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L/2a

Fig. 7. Correction of the Q-factor Q, /Q, versus aspect ratio L/2a
and b/a=0,1/4,1/2, and 3 /4. Full line dipole mode. Dashed
line ---- quadrupole mode.

TABLE II
RADIATION QUALITY-FACTOR VERSUS ASPECT RATIO L/2a FOR
.b/a=0,1/4,1/2,3/4 (DIPOLE MODE). THE UPPER PART I§
RELEVANT TO THE ZERO ORDER Q /N3, THE LOWER ONE TO THE
FIrsT CORRECTION Q,./ Q.

L/2a 1/5 1/3 1/2 2/3 1 3/2 2 3 5
b/a + -

.0 .08636 (1219 .1434 1508 ,1482 ,1321 1157 .09061 .06167
.25 L08351 .1181  .1391 L1465 L1447 L1287  ,1129 .08843 .06036
.50 .06306 .08907 .1053 .1114 .1104 .09935 .08756 .06900 04742
.75 .02890 .03978 .04649 ,04907 .OU875 04415 .03914 ;03109 .02155
it -

0 15,03 . 11,82 10,56 10.18 10,28 11,10 12.16 14.58 20.34
.25 15.48 12.17 10.84 10.44% 10,53 11.34 12.43 14,88 20.68
.50 19,24 15.16 13.50 12.97 12.99 13.89 15.13 17.95 24,57
.75 33,07 26.82 24.20 23.36 23.43 24.92 26.96 31.56 42,17
R

C. Quality Factor Due to Radiation Losses

The relevant information is contained in Figs. 6 and 7
and Table II. An idea of the accuracy is provided by
checking versus the sphere [19]. Including one or two terms
in Q, yields accuracies of 8.8 or 0.25 percent at ¢, =100;
19 or 1.3 percent at ¢,=39; and 26 or 2.6 percent at
¢, = 25 for the dipole mode. For the quadrupole mode, we
find (6.7 and 0.43 percent), (17 and 2.4 percent), and (25
and 5.1 percent), respectively. Note from Fig. 7 that the
correction term Q,/Q, can become larger for the
quadrupole mode than for the dipole mode. This is in
contrast with the first correction (k2),/k3, as Q,/Q, also
involves the first correction field a,.

IV. CoNcLUSIONS

The leading term in the asymptotic theory is sufficient
for the study of resonators with an e, of about 100.
Present-day materials tend to have lower ¢,’s, of the order
of 40, and the results of the “leading term” approximation
might not be sufficiently ‘accurate. Tsuji et al. [12] have
developed a method which yields excellent results for arbi-
trary ¢,, but requires a separate solution for each ¢, under
consideration. These authors, recognizing the advantage of
the asymptotic procedure, mention that the latter should
ideally be extended to higher order terms in, 1/N, but that
such an extension would be very complicated. We believe
that the present paper shows that these complications are
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minor. We have, in fact, obtained the next correction term
for the fields, the resonant wavenumber, and the quality
factor. These terms are of the order 1/N?2, The next term
of the resonant wavenumber, which is of the order 1/N%,
has also been evaluated. Extensive additional data on these
and other parameters, such as the dipole or quadrupole
moment, higher order multipoles, far-field, near-field,
etc., - - -, are available for the ring resonator, but have not
been included because of a lack of space [15].

It is extremely difficult to check the convergence of the
asymptotic seriecs with 1/¢, as a small parameter. Our
formulas, when applied to a spherical resonator, show that
use of the available corrections yields good values at ¢, = 39
and still tolerable results at €, = 25. Analogous accuracies
for the ring resonator can be expected for an aspect ratio
L/2a in the range (1/2,3/2) and an inner hole in the
range (b/a < 0.25). Outside this range, no precise indi-
cations on the accuracy are available, but larger errors may
be expected. We have also compared our results with
recent ones presented by Tsuji et al. for a pillbox [12]. For
¢, higher than 25, the difference is less than 0.1 percent for
the resonant wavenumber and less than 1 percent for the
Q-factor. Hence, for this range of ¢,, we may expect a good
convergence of the asymptotic series. Due to the asmptotic
nature of the expansions, the results do diverge for low
values of ¢,, such as 10 or less.

It is perhaps useful to reemphasize that the main merit
of the asymptotic method is to avoid repetitive calcula-
tions. Its validity for arbitrary (but sufficiently high) e,
allows one to quickly investigate, without additional com-
putations, the effect of variations of €, on the properties of
the resonator. These variations may be caused by factors
such as the temperature or the fluctuating nature of the
fabrication process. The relative shift of the resonant
frequency due to a variation in ¢,, for example, is easily
derived from (4) to be

2
Afres‘_’_l(l_}_(_k__)z_}_...)%_

) 2
€rkO

fres 2

(13)

»

APPENDIX
EVALUATION OF THE Q-FACTOR

The radiated fields are generated by the polarization
current

- 1 _
- (1 _ X’;)kzaud, (14)
which differs from zero only in V,, the inner volume of the
resonator. With (14), the magnetic vector potential, respec-
tively, everywhere and in the far-field, is [20]
k. =]
prigatd _k
7= Lo J(7) & a2 (15)
A_477'./f./VI g |F— 7| T R
where N is independent of R, the distance from a point in

the far-field to the center of the resonator. The power
radiated by (15) is

2
P L En [

2

N wal 49
Ko

(16)
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where the integral extends over all directions %. The method
proceeds now by inserting the series (4) into (14) and
retaining only 2 successive terms in the series in 1/N? in
all the calculations.

The total stored field energy & is the sum of the electric
and magnetic energy

&= fil [ff/ner|E|2dV+fffVJE[ZdV]

+ %f/fm AV ()

where V, is the outer volume of the resonator. It can be
proven that, at resonance, the electric and magnetic energy
are equal. Substituting the field components (1) into (17)
we find, up to the first order in 1/N?

) /_/L;aoazrdS
F.—__.I....

fLa%rdS
(18)

With the normalization (7) the total stored field energy
becomes, up to the first order, independent of N. Combin-
ing (16) and (17) in (11) gives the final result (12).

<§"=y07rk§(fj;a(2)rd5) 1+
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T heory and Numerical Simulation of a TE111
Gyroresonant Accelerator

WILLIAM’H. MINER, JR., PETER VITELLO, AND - ADAM T. DROBOT

Abstract —The production of spiral relativistic electron beams in a
TE,,, gyroresonant accelerator cavity for injection into a compact high-
harmeonic gyrotron is studied. Parametric studies are performed to de-
termine the effects of variations in the background magnetic field ampli-
tude, the RF amplitude in the cavity, and the initial beam voltage on the
output beam. The effects of velocity spread and a finite radial extent of the
input beam are also discussed. Power curves for obtaining optimum operat-
ing regimes for the TE,;, accelerator are provided.

I. INTRODUCTION

YROTRONS have successfully generated electro-
magnetic radiation in the millimeter and submillime-
ter wavelength ranges via the electron-cyclotron maser
instability [1]-{3]}. Electromagnetic radiation is produced
through the interaction of a relativistic electron beam

gyrating about an external magnetic field and an excited -
cavity mode which grows at the expense of the rotational

energy of the beam. The production of relativistic electron
beams, with most of its kinetic energy in the form of
rotational energy, therefore, plays a crucial role in the
development of gyrotron devices. '

In this paper, we discuss an “injection system” capable
of producing such a beam for use in a compact high-
harmonic gyrotron [4], [5]. This system, which consists of a

Manuscript received September 22, 1983; revised May 4, 1984. This
work was supported in part by U.C.L.A. under Contract 400001, and in
part by thé U.S. Army Research Office under Contract DAAG29-82-K-
0004.

W. H. Miner is with the Fusion Research Center, University of Texas,
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P. Vitello and A. T. Drobot are ‘with Science Apphcauons, Inc.,

McLean, VA 22102.

conventional electron gun and a resonant “accelerator”
cavity, has two advantages over other systems currently in
use: 1) the system is technically simple, and 2) it operates
at a relatively low voltage. It also differs from relativistic
electron-beam sources used in conventional gyrotrons in
that it produces a beam whose Larmor orbits encircle the
cavity axis. Conventional gyrotrons operate at the first or -
second harmonic with a relatively high magnetic field, and
with Larmor orbits of the beam particles which are much
smaller than the cavity radius. In contrast, the compact
high-harmonic gyrotron operates with a low magnetic field
and with Larmor orbits of the beam particles which are
comparable to the cavity radius, and which encircle the
cavity axis. This may permit the construction of gyrotrons
based on permanent magnet technology such as
samarium—cobalt.

Typical particle orbits in a conventional gyrotron are
shown in Fig. 1(a) and the axis-encircling orbits of the
compact high-harmonic gyrotron are shown in Fig. 1(b).
The remainder of the introduction consists of a brief
description of the current beam production methods with
emphasis on their advantages and disadvantages. Finally,
the novel system, which is the object of this paper, is
discussed. v ;

Most electron guns produce a monoenergetic, unidirec-
tional beam. The obvious way to produce a beam with a
large fraction of rotational energy would be to inject the
beam at an angle to the background magnetic field [6].
This angle would determine the partition of energy in the
beam between the perpendlcular and parallel components.

0018-9480 /84 /1000-1293$01.00 ©1984 IEEE



