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Correction Due to a Finite Permittivity for a
Ring Resonator in Free Space

RONALD DE SMEDT

Abstract —To better determine the resouant fields of a dielectric reso-

nator with high perrnittivity c,, the asymptotic theory with l/~ as a

small parameter is extended by adding bigher order terms in I/& in the

fields, the resonant wavenmnber, and radiation Q. Extensive data are

shown for the +-independent “ nonconfined” mode of a ring resonator,

which radiates as a magnetic dipole. Some results are added for the

“magnetic quadruple>’ mode.

I. INTRODUCTION

T HE CHARACTERISTICS of a dielectric resonator of

high permittivity, an important component of micro-

wave circuits [1]–[2], have been investigated extensively

[3]-[12]. A solution for arbitrary ~, requires the solution of

the field problem for each c, encountered in practice. This

cumbersome procedure can be avoided by introducing a

perturbational approach based on a series expansion in

l/iV = l/~ [9]–[11]. The leading term in these series

gives good results as soon as c, exceeds, say, 100 [11], [13],

[14]. Present resonators, however, are based on materials

with c, of the order of 38, because these materials have

better temperature coefficients, lower losses, and are more

reproducible. The present paper endeavors to extend the

limit of applicability of the perturbational approach by

evaluating higher order terms in the series in 1/N. Numeri-

cal data are given for the lowest +-independent “ noncon-
fined” resonant modes of a ring resonator located in free

space (Fig. 1). These modes radiate either as a magnetic

dipole or a quadruple. The quadruple mode satisfies an

“electric wall” condition in the z = O plane and, hence, is

relevant for a resonator located on a metallic plane [13].
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II. MATHEMATICAL FORMULATION

A. Fields

The @-independent fields with azimuthal ~ of an axially

symmetric resonator can be derived from a scalar function

a( r, z), according to

(1)

k is the wavenumber in the dielectric and Rc = I= =

120 T the free-space impedance. r, O, z are cylindrical coor-

dinates with the z-axis along the symmetry axis of the

resonator, a meridian cross section of which appears in Fig.

1. By substituting (1) in Maxwell’s equations, we find that

(L%+ k2cx= O, in S

\

~a+ga=o
in S’ and S“

N2 ‘

(2)

where S is the cross section of the inner volume of the

resonator and S‘ and S’” of the outer volume. The dif -
ferential operator JZ is

The functions a and 6’a/6’n are continuous on C (the

interface between resonator and vacuum), while a is zero

on the z-axis and regular at infinity. For a dipole mode, a

is symmetric about the z = O plane, while for a quadruple

mode it is antisymmetric. To apply the perturbational
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approach, the relevant power expansions are [15] where Cm is a circle of large radius R~ in the meridian

[

1
plane. In (10), we have made no use of the normalization

a=ao+—a2+Aa4+. . .
N2 N4

(7), as (10) is insensitive to the indeterminacy of a2.

(4)

k2=k~+-#k2)2+ -j(k2)Q+ ...
C. Quality Factor Due to Radiation Losses

To find Q,, the quality factor due to radiation losses, we

where we shall allow (k 2, z and (k 2, d to be positive or use the general relationship [9]

negative. It can be shown that only even powers in l/N

are present in (4) [15]; Inserting these values in (2) leads to
(

Qr=/:; =Qo l+~~+..”
)

(1.1)

the known equation for a. [11], and the following equation
r

for a’2: where @, is the radiated power, and r% the total stored

{

~a2 + k~a2 = – (k2)2ao
field energy. A detailed evaluation, shown in Appendix I,

in S

J?a2 = – k~ao

(5) leads to the following Q for the dipole mode:
in S’ and S“-

This equation determines a2 to within an arbitrary multi- J.112N3 S
a~rdS

[[

f.1
a~rdS

ple of ao. The resulting indeterminacy is classically re- Q,= —
,

moved by means of an orthogonality condition [16] which

is, in the present case [9] “ [Jkor2dsr 1++ 2+; ~&rds-

where ~~ and HP are the magnetic fields of two different

modes and ~. and VOare the inner and outer volume of the

resonator, respectively. Applied to a. and a2, (6) reduces

to

J.1aoazrdS = O.
s

(7)

B. Resonant Wavenumber

The fundamental relationship for the determination of

the higher perturbational orders is

/~[fSZg – g$?f]rdS =’~c[f~ – g#rdc (8)

with n the outward normal. Suitable use of (8) leads to

//
a~rdS

(k2)2= -k; “+s” .

JJ

(9)

a~rdS
s

If aoa2rdS
JY

a2r2dS

+2 s –2 s

J-f (a. r2+z2)r2dS
+~ s

5 11~(112)

11
aor2dS

s

For the magnetic quadruple mode, a similar expression

obtains, which is now proportional with N 5. As for ( k2 )4,

use of the normalization condition (7) is not necessary for

a correct evaluation of the correction term in (12).

D. Numerical Implementation

The regions S and S‘ are divided into triangular ele-

ments in which higher order polynomials are used. In the

exterior region S”, the field is represented by a finite sum

of static spherical harmonics with unknown coefficients.

On C,, we enforce the continuity of the finite-element
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Fig. 2. Zero- and second-order field of a pillbox with aspect ratio
L/2 a = 0.5 (dipole mode). (a) Zero-order field ao. (b) Second-order field

fi2 ,

functions and the series (Fig. 1). This method is very

reliable and yields excellent field values both inside and

outside the resonator, which are quite independent of the

position of the outer contour C= [17]. Checked against the

known analytical solution of the sphere, the accuracy on

the resonant wavenumber and the various integrals of a is

found better than 0.1 percent. In practice, we have used

about 70 third-order finite elements (346 vertices) and 9

terms in the expansion in the exterior region S”.

III. NUMERICAL RESULTS

We have applied our analysis to the ring resonator of

Fig. 1, the dipole mode of which has already been investi-

gated in the zero order [11]. We have also considered, for

purposes of verification, the spherical resonator for which

analytical solutions are available, both for arbitrary ~ and

the present asymptotic series [15], [18].

A. Fields

We have selected data for a pillbox of aspect ratio

L/2a =1/2 and radiating as a magnetic dipole. Fig. 2(a)

shows the lines of constant aO, normalized to a maximum

aO =1, and separated by steps of 0.1. Fig. 2(b) displays the

corresponding values of a2. The large distance behavior of

2 .5 1 2. 5.

L/2a

Fig. 3. Zero-order of the resonant wavenumber k. a versus aspect ratio
L/2a and bla = O. 1/4, 1/2. and 3[4. Full line — diDole mode.

D’ashed line :--- quadrupo~e mode. ‘
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Fig. 4. First correction of the resonant wavenumber – ( kz ) ~/k~ versus
aspect ratio L/2 a and b/a = O, 1/4, 1/2, and 3/4. Full line —
dipole mode. Dashed fine ---- quadrnpole mode.

these functions is of interest. For aO, it is sin 0/R2 and

sin 6’ for a2, We note that, in the case of the quadruple

mode, this behavior is sin O cos O/R 3 for aO and

sin 6 cos $/R for az.

B. Resonant Wavenumber

Plots of koa, –(k2)2/k& and (k2)d/k~ are given in

Figs. 3–5 for various geometrical ratios. The corresponding

numerical data for the dipole mode can be found in Table

I. In the figures, the full lines represent the results for the

dipole mode, while the dashed lines refer to the quadruple

mode. In Fig. 5, (k 2, ~/k~ is positive for the dipole mode

and negative for the quadruple mode. The data are of

great interest for practical applications. An idea of the

accuracy they provide is obtained by applying the per-

turbational method to the sphere [19]. For the sphere, using

one term, two terms, or three terms in the expansion (4) of

ka, respectively, gives a relative error of about 1, 0.1, or

0.01 percent at c,= 100; 2.1, 0.54, or 0.17 percent at

c,= 39; and 3, 1.2, or 0.58 percent at t,= 25 for the dipole

mode. For the quadruple mode, we find, respectively,

(0.36, 0.02,0.003 percent), (1, 0.1,0.05 percent), and
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L/2a

Fig. 5. Second correction of the resonant wavenumber 1(kz ) ~/k~ ] versus

aspect ratio L/2 a and b/a = O, 1/4, 1/2, and 3/4. Full line —
dipole mode. Dashed line ---- quadruple mode.
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Fig. 6. Zero-order of the Q-factor QO versus aspect ratio L\2a and

b/a = O, 1/4, 1/2, and 3/4. Fulf line — QO/lV3 (dipole mode).

Dashed line ---- Qo/N5 (quadruple mode).

TABLE I

RESONANT WAVENUMRER Vmsus ASPECT RATIO L /2a FOR

b/a = O, 1/4, 1/2, 3/4 (DIPOLE MODE). THS FIRS; PART IS
RELEVANT TO koa, THE SECOND ONE TO – (k2)2/k~, THE THIRD

ONE TO (k2)4/k;.

L/2a 1/5 1/3 1/2 2/3 1 3(2 2 3 5
b/a +--------------------------------------------------------------
.0 u.338 3.652 3.259 3.0U6 2.822 2.667 2.590 2.515 z.461
.25 4.363 3.673 3.277 3.063 2.837 2.68 I 2.603 2.521 2.u12
.50 ti.635 3.906 3.485 3.256 3.013 2.StiQ 2.759 2.677 2.616

.75 5.731 4.857 4.3b6 4.063 3.759 3.545 3.436 3.329 3.249
---- +--------------------------------------------------------------
.0 3.309 2.502 2.189 2.098 2.122 2.300 2.50’/ 2.897 3.547
.25 3.404 2.5I9 2.253 2.158 2.180 2.351 2.570 2.966 3.623
.50 4.237 3.265 2,879 2.762 2.779 2.980 3.224 3.690 U.U61
.75 7.442 6.051 5.494 5.334 5.394 5.748 6.169 6.965 8.286
---- +--------------------------------------------------------------
.0 U8.1 U 29.92 23.91 22.29 22.81 26.62 31.90 4Q.6U 77.87
.25 50.63 31.38 25.03 23.28 23.77 27.69 33.16 06.33 80.39
.50 75.09 46.89 37.36 34.60 35.00 40.27 47.’74 65.98 112.5
.75 216.3 142.2 116.1 108.5 109.9 125.2 147.1 199.4 331.4
. . . . . . . . . ----------------------------------------------------------

L

(1.6, 0.21,0.17 percent) for the same values of E,. A remark

of general interest-the correction term ( kz) ~/k~ is

smaller for. the quadruple mode than for the dipole mode.

This is because the zero-order fields are more strongly

concentrated in the dielectric region for the quadruple

mode than for its dipole counterpart.

40-
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Fig. 7. Correction of the Q-factor Q2 /QO versus aspect ratio L/2a

and b/a = O, 1/4, 1/2, and 3/4. Full line — dipole mode. Dashed
line ---- quadruple mode.

TABLE II
RADIATION QUALITY-FACTOR VERSUS ASPECT RATIO L/2 a FOIt

b/a = O. 1/4.1’/2. 3 /4 (DIPOLE MODE). THE UPPER PART IS
RE;EVANT’TO ThE’ZERO OIbER QO/N3, &e LOWER ONE TO IHE

FIRST CORRECTION Q2/Q0.

LIZ. 1/5 1/3 1/2 213 1 3/2 2 3 51
b(a + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.0

I

.08636 .1219 .1434 .1508 .1482 .1321 .1157 .09061 .06167
.25 .08351 .1181 .1391 .1465 .1441 .1287 .1129 .08843 .06036
.50 .06306 .089o7 .1053 .1114 .1104 .09935 .08756 .06900 .04742
.75 .02890 .03978 .04649 .0U907 .04875 .0UU15 .03914 .03109 .02155--. .+--------------------------------------------------------------- I
.0

I

15.03 11.82 10.56 10.18 10.28 11.10 12.16 14.58 20,34
.25 15.48 12.17 10.84 10. Uq 10.53 11.34 12.43 7U.88 20.68
.50 19.2U 15.16 13.50 12.97 12.99 13.89 15.13 17.95 24.57
.75 33. o7 26.82 2U.20 23.36 23.43 24.92 26.96 31.56 42.17
..............................................----------------------

I

C. Quality Factor Due to Radiation Losses

The relevant information is contained in Figs. 6 and 7

and Table IL An idea of the accuracy is provided by

checking versus the sphere [19]. Including one or two terms

in Qr yields accuracies of 8.8 or 0.25 percent at Cr =100;

19 or 1.3 percent at C,= 39; and 26 or 2.6 percent at

c, = 25 for the dipole mode. For the quadruple mode, we

find (6.7 and 0.43 percent), (17 and 2.4 percent), and (25

and 5.1 percent), respectively, Note from Fig. 7 that the

correction term Q ~/QO can become larger for the

quadruple mode than for the dipole mode. This is in

contrast with the first correction (k 2, * /k& as Qz /QO also

involves the first correction field, a*.

IV. CONCLUSIONS’

The leading term in the asymptotic theory is sufficient

for the study of resonators with an c, of about 100.

Present-day materials tend to have lower c,’s, of the order

of 40, and the results of the” leading term” approximation

might not be sufficiently accurate. Tsuji et al. [12] have

developed a method which yields excellent results for arbi-
tr~ c,, but requires a separate solution for each c, under

consideration. These authors, recognizing the advantage of

the asymptotic procedure, mention that the latter should

ideally be extended to higher order terms in l/N, but that

such an extension would be very complicated. We believe

that the present paper shows that these complicatior~s are
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minor. We have, in fact, obtained the next correction term

for the fields, the resonant wavenumber, and the quality

factor. These terms are of the order l/N2. The next term

of the resonant wavenumber, which is of the order l/N4,

has also been evaluated. Extensive additional data on these

and other parameters, such as the dipole or quadruple

moment, higher order multiples, far-field, near-field,

etc., . . . . are available for the ring resonator, but have not

been included because of a lack of space [15].

It is extremely difficult to check the convergence of the

asymptotic series with l/c, as a small parameter. Our

formulas, when applied to a spherical resonator, show that

use of the available corrections yields good values at c, = 39

and still tolerable results at c, = 25. Analogous accuracies

for the ring resonator can be expected for an aspect ratio

L/2a in the range (1/2,3/2) and an inner hole in the

range (b/a < 0.25), Outside this range, no precise indi-

cations on the accuracy are available, but larger errors may

be expected. We have also compared our results with

recent ones presented by Tsuji et al. for a pillbox [12]. For

Cr higher than 25, the difference is less than 0.1 percent for

the resonant wavenumber and less than 1 percent for the

Q-factor. Hence, for this range of c,, we may expect a good

convergence of the asymptotic series. Due to the asmptotic

nature of the expansions, the results do diverge for low

values of Cr, such as 10 or less.

It is perhaps useful to reemphasize that the main merit

of the asymptotic method is to avoid repetitive calcula-

tions. Its validity for arbitrary (but sufficiently high) c,

allows one to quickly investigate, without additional com-

putations, the effect of variations of t, on the properties of

the resonator. These variations may be caused by factors

such as the temperature or the fluctuating nature of the

fabrication process. The relative shift of the resonant

frequency due to a variation in c,, for example, is easily

derived from (4) to be

Afre, (—=–;1+

)

(k’), l . . . A&

f
(13)

res c,k; 67 “

APPENDIX

EVALUATION OF THE Q-FACTOR

The radiated fields are generated by the polarization

current

(14)

which differs from zero only in ~, the inner volume of the

resonator. With (14), the magnetic vector potential, respec-

tively, everywhere and in the far-field, is [20]

where ~ is independent of R, the distance from a point in

the far-field to the center of the resonator. The power

radiated by (15) is

where the integral extends over all directions ti. The method

proceeds now by inserting the series (4) into (14) and

retaining only 2 successive terms in the series in l/N2 in

all the calculations,

The total stored field energy C?is the sum of the electric

and magnetic energy

where VO is the outer volume of the resonator. It can be

proven that, at resonance, the electric and magnetic energy

are equal. Substituting the field components (1) into (17)

we find, up to t$.e first order in l/N 2

(18)

With the normalization (7) the total stored field energy

becomes, up to the first order, independent of N. Combin-

ing (16) and (17) in (11) gives the final result (12).
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Theory and Numerical Simulation of a TE1ll
Gyroresonant Accelerator

WILLIAM H. MINER, JR., PETER VITELLO, AND ADAM T. DROBOT

Abstract —Tfre production of sniraf relativistic electron beams in a
~ 111&!YrOresOnantaccelerator cavity for injection into a compact high.
harmonic gyrotron is studied. Parametric stu~es are performed to de-
termine the effects of variations in the backgroundmagnetic field ampli-
tude, the RF ampfitude in the cavity, and the initiaf beam voltage on the
output beam.The effects of velocity spreadanda finite radial extent of the
input beamare afsodisassed. Powercurvesfor obtaining optimum operat-
ing regimesfor the TE ,11acceleratorare provided.

I. INTRODUCTION

G YROTRONS have successfully generated electro-

magnetic radiation in the inillimeter and submillime

ter wavelength ranges via the electron-cyclotron maser

instability [1]–[3]. Electromagnetic radiation is produced

through the interaction of a relativistic electron beam

gyrating about an external magnetic field and an excited

cavity mode which grows at the expense of the rotational

energy of the beam. The production of relativistic electron

beams, with most of its kinetic energy in the form of

rotational energy, therefore, plays a crucial role in the

development of gyrotron devices.

In this paper, we discuss an “injection system” capable

of producing such a beam for use in a compact high-

harmonic gyrotron [4], [5]. This system, which consists of a
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conventional electron gun and a resonant “accelerator”

cavity, has two advantages over other systems currently in

use: 1) the system is technically simple, and 2) it operates

at a relatively low voltage. It also differs from relativistic

electron-beam sources used in conventional gyrotrom in

that it produces a beam whose Larmor orbits encircle the

cavity axis. Conventional gyrotrons operate at the first or

second harmonic with a relatively high magnetic field, and

with Larmor orbits of the beam particles which are much

smaller than the cavity radius. In contrast, the compact

high-harmonic gyrotron operates with a low magnetic lield

and with Larmor orbits of the beam particles which are

comparable to the cavity radius, and which encircle the

cavity axis. This may permit the construction of gyrotrons

based on permanent magnet technology such as

samarium-cobalt.

Typical particle orbits in a conventional” gyrotron are

shown in Fig. l(a) and the axis-encircling orbits of the

compact high-harmonic gyrotron are shown in Fig. l(b).

The remainder of the introduction consists of a brief

description of the current beam production methods with

emphasis on their advantages and disadvantages, Finally,

the novel system, which is the object of this paper, is

discussed.

Most electron guns produce a monoenergetic, unidirec-

tional beam. The obvious way to produce a beam with a

large fraction of rotational energy would be to inject the

beam at an angle to the background magnetic field [6].

This angle would deterntine the partition of energy in the

beam between the perpendicular and parallel components.
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